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Abstract. Nonlinear deformation algebra are realized in a physical system with Pöschl–Teller
potential. The raising and lowering operators satisfying this algebra are constructed, from which
the eigenproblem of the system can be exactly solved by the operator method. The physical
meaning of two deforming functions involved in this algebra is also found. In addition,SU(1, 1)
algebra is obtained naturally, and discussions on the coherent state are also made.

1. Introduction

For a long time, all efforts to develop the theory of symmetry in physics were restricted
to the linear case, i.e. to Lie groups and Lie algebras which are among the cornerstones
of modern physics. However, it has been stressed that there was nophysical reason for
symmetries to be linear and that Lie group theory was therefore too restrictive [1]. Since
the discovery of quantum algebra (q-deformation of Lie algebras) by Drinfeld [2] as a type
of nonlinear algebra setting for the inverse scattering problem, this algebra has found many
applications in diverse domains of physics, such as two-dimensional (2D) integrable models,
systems on lattices and 2D conformal field theories [3, 4]. Recently, nonlinear deformations
of SU(2) andSU(1, 1) algebras (NLDA) with two deforming functionsg(J0) andf (J0)

were introduced by Delbecq and Quesne [5]. For the caseg(J0) = 1 with arbitraryf (J0),
the algebra has been studied by Rocek who has represented the theory and suggested that
the presence of an arbitrary function might prove useful in some applications to physical
models [6]. Obviously, it includesSU(2), SU(1, 1) andSUq(2) etc as special cases [7–9]
according to different choices of the two deforming functions. Although the probability of
physical applications is suggested, this kind of nonlinear algebra has still limited itself to
mathematical discussions and has not yet been used as a powerful technique in physics. In
order to fully explore the roles played by thenonlinear algebrasin physics further, we show
that nonlinear deformations ofSU(2) andSU(1, 1) algebras can be realized in a physical
system with P̈oschl–Teller potential, which is one of the exactly solvable one-dimensional
quantum-mechanical potentials. Due to this algebra, the eigenproblem of the system can be
determined by the operator method without dealing with the Schrödinger equation.

This work is organized as follows: in section 2, we review the nonlinear deformation
algebra and give definitions of the raising and lowering operators together with the
Hamiltonian operator, which form generators of NLDA. In section 3 the energy spectrum
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and eigenkets of the system are obtained by the operator method. We point out the physical
meaning of two deforming functions and obtain theSU(1, 1) algebra from NLDA naturally
in section 4. Some conclusions are discussed in the last section.

2. NLDA realized in a physical system with P̈oschl–Teller potential

As noted in [5], the ‘nonlinear deformation algebras’ generated by the three operators
J0 = (J0)

†, J+ andJ− = (J+)†, satisfy the following commutation relations

[J0, J−] = −J−g(J0) [J0, J+] = g(J0)J+ [J−, J+] = f (J0) (1)

and the algebras have a Casimir operator of the type

C = J−J+ + h(J0) (2)

whereg(J0), f (J0) and h(J0) are three real ‘deforming functions’ ofJ0, holomorphic in
the neighbourhood of zero and satisfy the following relation

h(J0)− h(J0− g(J0)) = f (J0). (3)

Now, we consider a physical system with a particle of massm moving in the symmetric
Pöschl–Teller potential, which takes the form

V (x) = V0

cos2(kx)
(4)

whereV0 is a constant andk is a parameter. The corresponding Hamiltonian reads

H = p2

2m
+ V (x). (5)

Assuming |ψ〉 andE are eigenfunction and eigenenergy of the system, respectively, we
need to solve the eigenvalue problem

H |ψ〉 = E|ψ〉. (6)

As is well known, with the P̈oschl–Teller potential this eigenvalue problem can be exactly
solved by dealing with the Schrödinger equation directly; the eigenfunctions are represented
by hypergeometric polynomials and trigonometric functions [10]. In the following, we shall
construct the raising and lowering operators for the Hamiltonian system and solve this
problem by the operator method. In fact, the operators we construct together with the
Hamiltonian satisfy the nonlinear deformation algebra introduced in (1). The results from
solving the Schr̈odinger equation can be used to test the validity of those from the operator
method.

We start from the following definitions

X = sin(kx) P = 1
2k{cos(kx), p} (7)

where the symbol{ , } represents the anti-commutator. Using the fundamental commutation
relation [x, p] = ih̄, we obtain

[X,P ] = ih̄k2(1−X2) [H,X] = − ih̄

m
P [H,P ] = ih̄k2

(
HX +XH − 1

2
εX

)
(8)

with ε = (h̄2k2/2m).
The last two equations of (8) can be rewritten in the following matrix form

H(X,P ) = (X, P )G (9)
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whereG is a (2× 2) matrix

G =
(

H ih̄k2
(
2H − 1

2ε
)

−ih̄/m H + 2ε

)
. (10)

Solving the equation

det(G− λI) = 0 (11)

we obtain eigenvalues ofG as follows

λ1 = H + ε + 2
√
εH = (

√
H +√ε)2 λ2 = H + ε − 2

√
εH = (

√
H −√ε)2. (12)

The diagonalizedG can be written in the form

G = S3S−1 (13)

where

3 =
(
λ1 0
0 λ2

)
(14)

and the diagonalizing matrix

S =
(
ε − 2

√
εH ε + 2

√
εH

ih̄/m ih̄/m

)
. (15)

Let F(H) be a real function ofH , holomorphic in the neighbourhood of zero, and from
(9) we have the following operator equation

F(H)(X, P ) = (X, P )SF(3)S−1. (16)

By defining

g(H) = H − λ2 = −ε + 2
√
εH f (H) = 4γ 2ε(λ1−H) = 4γ 2ε2

(
1+ 2

√
H

ε

)
b = γ

[
X(λ1−H)+ ih̄

m
P

]
b+ = (b)† = γ

[
(λ1−H)X − ih̄

m
P

]
(17)

where γ is a changeable parameter which enablesb and b+ to be dimensionless, from
equations (16) and (17), we get

[H, b] = −bg(H) [H, b+] = g(H)b+ [b, b+] = f (H). (18)

Due to relation (3), we find

h(H) = 4γ 2ελ1 (19)

so that according to (2) the Casimir operator can also be determined.
Hence, we have introduced the raising operatorb+ and the lowering operatorb in (17)

and successfully embedded the operatorsb, b+ andH into (18) which is the nonlinear
deformation algebra introduced in (1). Thus, we show that NLDA can be realized in the
symmetric P̈oschl–Teller model. In the next section we show that the eigenvalue problem
(6) can be solved by the operator method formed byb andb+.
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3. Determination of eigenenergies and eigenkets of the system

From equations (16) and (17), we obtain

F(H)b = bF(H − g(H)) F (H)b+ = b+F(H + 2ε + g(H)) (20)

and

b+ = −γ
[
X(ε − 2

√
εH)+ ih̄

m
P

](
ε√
εH
+ 1

)
. (21)

The eigenequation is

H |ψn〉 = En|ψn〉. (22)

From the first equation of (18) we have

[H, b]|ψn〉 = −bg(H)|ψn〉 (23)

or

H(b|ψn〉) = (En − g(En))(b|ψn〉). (24)

Let |ψn−1〉 = b|ψn〉 6= 0 denote a new eigenket ofH with the eigenvalue

En−1 = En − g(En) (25)

or

g(En) = En − En−1 (26)

then from (25) we easily obtain√
En =

√
En−1+

√
ε (27)

so that √
En =

√
E0+ n

√
ε (28)

or

En = ε(n+ ν)2 n = 0, 1, 2, . . . (29)

with

ν =
√
E0

ε
(30)

whereE0 is the zero-point energy, i.e. the lowest eigenvalue, which will be determined
later. To make it clearer and to determine the eigenkets, we take the following step. Let
|ψ0〉 be the ground state, so we have

H |ψ0〉 = E0|ψ0〉 (31)

and

b|ψ0〉 = 0. (32)

By solving these equations, one can obtain

|ψ0〉 = cosν(kx). (33)

After substituting it into (31), we find that

V0 = h̄
2k2

2m
ν(ν − 1) (34)
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so that

ν = 1

2

(
1−

√
1+ 4V0

ε

)
. (35)

Combining (29) with (35) we therefore find that the energy spectrum of a particle moving
in Pöschl–Teller potential is given by

En = h̄
2k2

2m

[
n+ 1

2

(
1−

√
1+ 8mV0

h̄2k2

)]2

n = 0, 1, 2, . . . . (36)

The wavefunction|ψn+1〉 can be constructed by the action ofb+ on |ψn〉

|ψn+1〉 = b+|ψn〉
= −γ

[
Xε(1− 2(n+ ν)+ ih̄

m
P

](
1

n+ ν + 1

)
|ψn〉

∝
[
(n+ ν) sin(kx)− 1

k
cos(kx)

d

dx

]
|ψn〉. (37)

In more detail we write the first few (unnormalized) as follows:

|ψ1〉 = cosν(kx) sin(kx)

|ψ2〉 = cosν(kx)[2(1+ ν) sin2(kx)− 1]

|ψ3〉 = cosν(kx) sin(kx)[2(2+ ν) sin2(kx)− 3]
|ψ4〉 = cosν(kx)[4(2+ ν)(3+ ν) sin4(kx)− 12(2+ ν) sin2(kx)+ 3] (38)

etc

and rewrite these eigenfunctions by hypergeometric polynomials. For even values ofn, we
have

|ψn〉 = Cn cosν(kx)2F1

(
−n

2
,
n

2
+ ν; 1

2
; sin2(kx)

)
(39)

while for oddn it corresponds to

|ψn〉 = Cn cosν(kx) sin(kx)2F1

(
−n

2
+ 1

2
,
n

2
+ ν + 1

2
; 3

2
; sin2(kx)

)
(40)

whereCn is the normalizing constant.
Thus, we have obtained the energy spectrum and wavefunctions for a particle moving

in the P̈oschl–Teller potential by the operator method. Obviously they are coincident with
those obtained from the solution of the Schrödinger equation [10]. These eigensolutions
and eigenfunctions given in the analytic, special-function (no hypergeometric function) form
including analytic normalizations can be seen in [11].

It is also interesting to consider the limiting case, whereV0→ 0, the problem becomes
one of a particle in an infinite square well. Takingk = π/L, whereL is the width of the
potential well, the quantityν tends to zero and, as we expect, the energy (36) reduces to

En = h̄2

2m

π2n2

L2
n = 1, 2, . . . . (41)
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4. Physical meaning of two deforming functions andSU (1, 1) algebra

From equation (18) one can easily prove that the two arbitrary deforming functionsg(J0)

andf (J0) can be rewritten into the functions ofH , namelyg(H) andf (H). Equation (26)
shows thatg(En) is an interval between two adjacent energy levels specified by degreesn

andn− 1, respectively. Sinceg(En) = −ε + 2
√
εEn depends onEn, the energy intervals

of the system are unequal. In order to clearly see the physical meaning ofg(H), we can
refer to the one-dimensional linear harmonic oscillator, whose HamiltonianH , raising and
lowering operatorsa+ anda satisfy the following algebra

[H, a] = −h̄ωa [H, a+] = h̄ωa+ [a, a+] = 1. (42)

Obviously they are also a special case of NLDA in the following meaning

g(H) = h̄ω f (H) = 1. (43)

So g(H) is a constant and does not depend onH . As we know, the energy spectrum of a
linear harmonic oscillator is discrete and its energy levers are equally spaced by the interval
g(H) = h̄ω. Based on this, the physical meaning ofg(H) is clear, namely, it is just an
energy interval operatorgiving the interval between two adjacent energy levers when it
acts on a certain eigenfunction|ψn〉.

From the last equation of (18), one finds that

H = f −1([b, b+]) (44)

wheref −1 is the inverse function off , equation (44) means that the Hamiltonian operator
H can be represented by the raising and lowering operators, which is just the physical
meaning off (H).

If we select

4γ 2ε2 = 1 (45)

and use the second equation of (17), then we obtain

H = h̄
2k2

8m
(bb+ − b+b − 1)2. (46)

Finally, we see that, corresponding to equation (20) an equivalent equation can be obtained
as follows

F(
√
H)b = bF(

√
H −√ε) F (

√
H)b+ = b+F(

√
H +√ε). (47)

Thus, if we define

J0 = 1

2
+
√
H

ε
J+ = b+ J− = b (48)

combine these with (45) and letF(
√
H) = √H in (47), it is easy to verify that

[J0, J+] = J+ [J0, J−] = −J− [J+, J−] = −2J0. (49)

So we can obtain here a simpler algebraSU(1, 1) from NLDA naturally. TheSU(1, 1)
symmetry for the P̈oschl–Teller potential or other potentials has been discussed in many
literatures [12–14]. However, in our work we achieve it from the point of view of the
nonlinear deformation algebra.
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5. Discussion and conclusions

(1) To theSU(1, 1) algebra realized in equations (48) and (49), we have the Hermiticity
properties

(J0)
† = J0 (J+)† = J− (50)

which are requirements in the definition of NLDA (see equation (1)).
Explicit forms of the lowering and raising operators are

b = sin(kx)

√
H

ε
+ i

h̄k
cos(kx)p

b+ = (b)† =
√
H

ε
sin(kx)− i

h̄k
p cos(kx)

p = −ih̄
d

dx
. (51)

Note that they are the strict operators associated with the Hamiltonian operatorH . After
equations (21) and (51) acting on|ψn〉, one can obtain the lowering and raising operators
which aren-dependent for the P̈oschl–Teller system

bn = sin(kx)(n+ ν)+ i

h̄k
cos(kx)p

b+n = sin(kx)(n+ ν)− i

h̄k
cos(kx)p. (52)

These kind of operators have been used in [15] to show the coherent state for the Pöschl–
Teller system. However,bn andb+n are not mutually adjoint.

The Hermitian operatorsX andP are ‘natural quantum variables’ as referred to in [15].
It has also been shown that they can be written as the sum and difference of [bn + (b+n )†]
and [(bn)† + b+n ], which are adjoints of each other. Specifically

X = 1

4(n+ ν) {[bn + (b
+
n )
†] + [(bn)

† + b+n ]} P = h̄k
2

4i
{[bn + (b+n )†] − [(bn)

† + b+n ]}.
(53)

However, from (21) and the third equation of (17) we have

(b, b+) = (X, P )M (54)

with M a matrix depending on the parameterH

M = γ

 λ1−H −(λ2−H)
(√

ε

H
+ 1

)
ih̄

m
− ih̄

m

(√
ε

H
+ 1

)
 (55)

so that

(X, P ) = (b, b+)M−1 (56)

whereM−1 is the inverse matrix ofM. Consequently, the ‘natural quantum variables’ can
be expressed in terms of the strict operatorsb, b+ andH .

(2) Eventually, we want to simply mention the coherent state for the Pöschl–Teller
system, since we have established theSU(1, 1) algebra in it. The termcoherent state(CS)
was first coined by Glauber in 1963, who constructed the eigenstates of the annihilation
operator of the quantum harmonic oscillator in order to study the electromagnetic correlation
functions, a subject of great importance in quantum optics [16]. Extensive applications of
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such a state can be seen in [17] and references therein. Three kinds of standard definitions
for the Weyl–Heisenberg algebra CS result in the same state in the simple harmonic-
oscillator system, but for other algebras the equivalents will not always hold [18–21].
The coherent states were generalized in different ways by different authors, for instance,
Nieto and Simmons have defined the generalized CS as states which satisfied the classical
equations of motion; Radcliffe and Perelemov defined them as states displaced from the
ground state or a reference state [22–23], while Barut and Girardello [24] developed that
the ‘new coherent state’ are eigenstates of the lowering operator of non-compact groups
such asSU(1, 1).

Following the spirit of [22–24], the CS|α〉 is defined by

b|α〉 = α|α〉 D(α)|0〉 = |α〉. (57)

As shown in [15], because the energy levels of the Pöschl–Teller system are not equally
spaced, then (a) the CS|α〉 defined earlier is not the same as the minimum-uncertainty
coherent state, and (b) the appropriate displacement operatorD(α) is not in general an
exponential, but can be a more complicated functional. In [18], theSU(1, 1) generalized
CS |ξ, j〉 is defined by

|ξ, j〉 = S(α)|0, j〉 J−|0, j〉 = 0 S(α) = exp(αJ+ − α∗J−) (58)

due to theSU(1, 1) disentangling theorem [25]; an explicit expression for|ξ, j〉 can be
found.

Therefore, forSU(1, 1), different definitions lead to distinct states. In [20, 21], authors
introduce the concept of algebra eigenstates (AES) which are defined for an arbitrary Lie
group as eigenstates of the elements of the corresponding complex Lie algebra. This concept
unifies different definitions of coherent states associated with a dynamical symmetry group
which in detail, readers can investigate in the literature.

In summary, we have developed an operator method to exactly solve the physical system
with Pöschl–Teller potential and give its energy spectrum. The operators we constructed
form a nonlinear deformation algebra as introduced by Delbecqet al (1993). The two
deforming functions involved in this algebra have a definite physical meaning. In a sense,
we successfully realized an application of NLDA to a physical system. Moreover, coherent
states are also discussed.
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